Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cureus ; 16(4): e57902, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38725788

RESUMO

Anaplasma phagocytophilum is the causative agent of human granulocytic anaplasmosis (HGA), a tick-borne illness with increasing incidence since being described in the 1990s. Importantly, the presentation can be vague, yet prompt treatment is paramount. An 81-year-old Caucasian female was hospitalized in Cincinnati, Ohio, for fever and confusion following prolonged outdoor exposure in Emlenton, Pennsylvania. She initially was treated for sepsis from presumed community-acquired pneumonia; however, the combination of leukopenia, thrombocytopenia, and elevated liver enzymes prompted empiric tick-borne illness consideration and treatment with rapid resolution in symptoms. Early recognition of HGA can reduce unnecessary treatments and improve patient outcomes.

2.
J Imaging Inform Med ; 37(1): 92-106, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38343238

RESUMO

A critical clinical indicator for basal cell carcinoma (BCC) is the presence of telangiectasia (narrow, arborizing blood vessels) within the skin lesions. Many skin cancer imaging processes today exploit deep learning (DL) models for diagnosis, segmentation of features, and feature analysis. To extend automated diagnosis, recent computational intelligence research has also explored the field of Topological Data Analysis (TDA), a branch of mathematics that uses topology to extract meaningful information from highly complex data. This study combines TDA and DL with ensemble learning to create a hybrid TDA-DL BCC diagnostic model. Persistence homology (a TDA technique) is implemented to extract topological features from automatically segmented telangiectasia as well as skin lesions, and DL features are generated by fine-tuning a pre-trained EfficientNet-B5 model. The final hybrid TDA-DL model achieves state-of-the-art accuracy of 97.4% and an AUC of 0.995 on a holdout test of 395 skin lesions for BCC diagnosis. This study demonstrates that telangiectasia features improve BCC diagnosis, and TDA techniques hold the potential to improve DL performance.

3.
J Imaging Inform Med ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332404

RESUMO

In recent years, deep learning (DL) has been used extensively and successfully to diagnose different cancers in dermoscopic images. However, most approaches lack clinical inputs supported by dermatologists that could aid in higher accuracy and explainability. To dermatologists, the presence of telangiectasia, or narrow blood vessels that typically appear serpiginous or arborizing, is a critical indicator of basal cell carcinoma (BCC). Exploiting the feature information present in telangiectasia through a combination of DL-based techniques could create a pathway for both, improving DL results as well as aiding dermatologists in BCC diagnosis. This study demonstrates a novel "fusion" technique for BCC vs non-BCC classification using ensemble learning on a combination of (a) handcrafted features from semantically segmented telangiectasia (U-Net-based) and (b) deep learning features generated from whole lesion images (EfficientNet-B5-based). This fusion method achieves a binary classification accuracy of 97.2%, with a 1.3% improvement over the corresponding DL-only model, on a holdout test set of 395 images. An increase of 3.7% in sensitivity, 1.5% in specificity, and 1.5% in precision along with an AUC of 0.99 was also achieved. Metric improvements were demonstrated in three stages: (1) the addition of handcrafted telangiectasia features to deep learning features, (2) including areas near telangiectasia (surround areas), (3) discarding the noisy lower-importance features through feature importance. Another novel approach to feature finding with weak annotations through the examination of the surrounding areas of telangiectasia is offered in this study. The experimental results show state-of-the-art accuracy and precision in the diagnosis of BCC, compared to three benchmark techniques. Further exploration of deep learning techniques for individual dermoscopy feature detection is warranted.

4.
Neuroscientist ; 26(2): 134-155, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31092147

RESUMO

Traumatic brain injury (TBI) is a major health problem in the United States, which affects about 1.7 million people each year. Glial cells, T-cells, and mast cells perform specific protective functions in different regions of the brain for the recovery of cognitive and motor functions after central nervous system (CNS) injuries including TBI. Chronic neuroinflammatory responses resulting in neuronal death and the accompanying stress following brain injury predisposes or accelerates the onset and progression of Alzheimer's disease (AD) in high-risk individuals. About 5.7 million Americans are currently living with AD. Immediately following brain injury, mast cells respond by releasing prestored and preactivated mediators and recruit immune cells to the CNS. Blood-brain barrier (BBB), tight junction and adherens junction proteins, neurovascular and gliovascular microstructural rearrangements, and dysfunction associated with increased trafficking of inflammatory mediators and inflammatory cells from the periphery across the BBB leads to increase in the chronic neuroinflammatory reactions following brain injury. In this review, we advance the hypothesis that neuroinflammatory responses resulting from mast cell activation along with the accompanying risk factors such as age, gender, food habits, emotional status, stress, allergic tendency, chronic inflammatory diseases, and certain drugs can accelerate brain injury-associated neuroinflammation, neurodegeneration, and AD pathogenesis.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Lesões Encefálicas Traumáticas/fisiopatologia , Encéfalo/metabolismo , Inflamação/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/patologia , Lesões Encefálicas Traumáticas/metabolismo , Modelos Animais de Doenças , Humanos , Inflamação/fisiopatologia
5.
J Neuroimmune Pharmacol ; 14(4): 608-641, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31011884

RESUMO

Despite significant advancements in the field of molecular neurobiology especially neuroinflammation and neurodegeneration, the highly complex molecular mechanisms underlying neurodegenerative diseases remain elusive. As a result, the development of the next generation neurotherapeutics has experienced a considerable lag phase. Recent advancements in the field of genome editing offer a new template for dissecting the precise molecular pathways underlying the complex neurodegenerative disorders. We believe that the innovative genome and transcriptome editing strategies offer an excellent opportunity to decipher novel therapeutic targets, develop novel neurodegenerative disease models, develop neuroimaging modalities, develop next-generation diagnostics as well as develop patient-specific precision-targeted personalized therapies to effectively treat neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis, Frontotemporal dementia etc. Here, we review the latest developments in the field of CRISPR-mediated genome editing and provide unbiased futuristic insights regarding its translational potential to improve the treatment outcomes and minimize financial burden. However, despite significant advancements, we would caution the scientific community that since the CRISPR field is still evolving, currently we do not know the full spectrum of CRISPR-mediated side effects. In the wake of the recent news regarding CRISPR-edited human babies being born in China, we urge the scientific community to maintain high scientific and ethical standards and utilize CRISPR for developing in vitro disease in a dish model, in vivo testing in nonhuman primates and lower vertebrates and for the development of neurotherapeutics for the currently incurable neurodegenerative disorders. Graphical Abstract.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Edição de Genes/tendências , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/terapia , Medicina de Precisão/tendências , Animais , Edição de Genes/métodos , Terapia Genética/métodos , Terapia Genética/tendências , Humanos , Medicina de Precisão/métodos , Resultado do Tratamento
6.
J Neuroimmune Pharmacol ; 14(4): 537-550, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30810907

RESUMO

Microglial cells are brain specific professional phagocytic immune cells that play a crucial role in the inflammation- mediated neurodegeneration especially in Parkinson's disease (PD) and Alzheimer's disease. Glia maturation factor (GMF) is a neuroinflammatory protein abundantly expressed in the brain. We have previously shown that GMF expression is significantly upregulated in the substantia nigra (SN) of PD brains. However, its possible role in PD progression is still not fully understood. The Clustered-Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR Associated (Cas) protein9 (CRISPR/Cas9) system is a simple, rapid and often extremely efficient gene editing tool at desired loci, enabling complete gene knockout or homology directed repair. In this study, we examined the effect of GMF editing by using the CRISPR/Cas9 technique in BV2 microglial cells (hereafter referred to as BV2-G) on oxidative stress and nuclear factor erythroid 2-related factor 2 (NRF2)/Hemeoxygenase1 (HO-1)-dependent ferritin activation after treatment with (1-methyl-4-phenylpyridinium) MPP+. Knockout of GMF in BV2-G cells significantly attenuated oxidative stress via reduced ROS production and calcium flux. Furthermore, deficiency of GMF significantly reduced nuclear translocation of NRF2, which modulates HO-1 and ferritin activation, cyclooxygenase 2 (COX2) and nitric oxide synthase 2 (NOS2) expression in BV2 microglial cells. Lack of GMF significantly improved CD11b and CD68 positive microglial cells as compared with untreated cells. Our results also suggest that pharmacological and genetic intervention targeting GMF may represent a promising and a novel therapeutic strategy in controlling Parkinsonism by regulating microglial functions. Targeted regulation of GMF possibly mediates protein aggregation in microglial homeostasis associated with PD progression through regulation of iron metabolism by modulating NRF2-HO1 and ferritin expression.


Assuntos
Sistemas CRISPR-Cas/fisiologia , Ferritinas/genética , Fator de Maturação da Glia/genética , Heme Oxigenase-1/genética , Proteínas de Membrana/genética , Dinâmica Mitocondrial/fisiologia , Fator 2 Relacionado a NF-E2/genética , Neuroglia/fisiologia , 1-Metil-4-fenilpiridínio/toxicidade , Animais , Proteína 9 Associada à CRISPR/biossíntese , Proteína 9 Associada à CRISPR/genética , Linhagem Celular , Ferritinas/biossíntese , Edição de Genes/métodos , Fator de Maturação da Glia/deficiência , Heme Oxigenase-1/biossíntese , Proteínas de Membrana/biossíntese , Camundongos , Fator 2 Relacionado a NF-E2/biossíntese , Neuroglia/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
7.
Mol Neurobiol ; 56(3): 1681-1693, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29916143

RESUMO

Inflammatory mediators released from activated microglia, astrocytes, neurons, and mast cells mediate neuroinflammation. Parkinson's disease (PD) is characterized by inflammation-dependent dopaminergic neurodegeneration in substantia nigra. 1-Methyl-4-phenylpyridinium (MPP+), a metabolite of parkinsonian neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), induces inflammatory mediators' release from brain cells and mast cells. Brain cells' interaction with mast cells is implicated in neuroinflammation. However, the exact mechanisms involved are not yet clearly understood. Mouse fetal brain-derived cultured primary astrocytes and glia-neurons were incubated with mouse mast cell protease-6 (MMCP-6) and MMCP-7, and mouse bone marrow-derived mast cells (BMMCs) were incubated with MPP+ and brain protein glia maturation factor (GMF). Interleukin-33 (IL-33) released from these cells was quantitated by enzyme-linked immunosorbent assay. Both MMCP-6 and MMCP-7 induced IL-33 release from astrocytes and glia-neurons. MPP+ and GMF were used as a positive control-induced IL-33 and reactive oxygen species expression in mast cells. Mast cell proteases and MPP+ activate p38 and extracellular signal-regulated kinases 1/2 (ERK1/2), mitogen-activated protein kinases (MAPKs), and transcription factor nuclear factor-kappa B (NF-κB) in astrocytes, glia-neurons, or mast cells. Addition of BMMCs from wt mice and transduction with adeno-GMF show higher chemokine (C-C motif) ligand 2 (CCL2) release. MPP+ activated glial cells and reduced microtubule-associated protein 2 (MAP-2) expression indicating neurodegeneration. IL-33 expression increased in the midbrain and striatum of PD brains as compared with age- and sex-matched control subjects. Glial cells and neurons interact with mast cells and accelerate neuroinflammation and these interactions can be explored as a new therapeutic target to treat PD.


Assuntos
Astrócitos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Interleucina-33/metabolismo , NF-kappa B/metabolismo , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Triptases/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Corpo Estriado/metabolismo , Humanos , Mastócitos/metabolismo , Mesencéfalo/metabolismo , Camundongos , Transdução de Sinais/fisiologia
8.
Mol Neurobiol ; 55(9): 7132-7152, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29383690

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disease affecting over five million individuals worldwide. The exact molecular events underlying PD pathogenesis are still not clearly known. Glia maturation factor (GMF), a neuroinflammatory protein in the brain plays an important role in the pathogenesis of PD. Mitochondrial dysfunctions and oxidative stress trigger apoptosis leading to dopaminergic neuronal degeneration in PD. Peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1α or PPARGC-α) acts as a transcriptional co-regulator of mitochondrial biogenesis and energy metabolism by controlling oxidative phosphorylation, antioxidant activity, and autophagy. In this study, we found that incubation of immortalized rat dopaminergic (N27) neurons with GMF influences the expression of peroxisome PGC-1α and increases oxidative stress, mitochondrial dysfunction, and apoptotic cell death. We show that incubation with GMF reduces the expression of PGC-1α with concomitant decreases in the mitochondrial complexes. Besides, there is increased oxidative stress and depolarization of mitochondrial membrane potential (MMP) in these cells. Further, GMF reduces tyrosine hydroxylase (TH) expression and shifts Bax/Bcl-2 expression resulting in release of cytochrome-c and increased activations of effector caspase expressions. Transmission electron microscopy analyses revealed alteration in the mitochondrial architecture. Our results show that GMF acts as an important upstream regulator of PGC-1α in promoting dopaminergic neuronal death through its effect on oxidative stress-mediated apoptosis. Our current data suggest that GMF is a critical risk factor for PD and suggest that it could be explored as a potential therapeutic target to inhibit PD progression.


Assuntos
Apoptose/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Fator de Maturação da Glia/farmacologia , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Caspases/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatina/metabolismo , Cromatina/ultraestrutura , Citocromos c/metabolismo , Citosol/efeitos dos fármacos , Citosol/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Ativação Enzimática/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Modelos Biológicos , Fosforilação Oxidativa/efeitos dos fármacos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Proteína X Associada a bcl-2/metabolismo
9.
Front Cell Neurosci ; 11: 216, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28790893

RESUMO

Neuroinflammatory response is primarily a protective mechanism in the brain. However, excessive and chronic inflammatory responses can lead to deleterious effects involving immune cells, brain cells and signaling molecules. Neuroinflammation induces and accelerates pathogenesis of Parkinson's disease (PD), Alzheimer's disease (AD) and Multiple sclerosis (MS). Neuroinflammatory pathways are indicated as novel therapeutic targets for these diseases. Mast cells are immune cells of hematopoietic origin that regulate inflammation and upon activation release many proinflammatory mediators in systemic and central nervous system (CNS) inflammatory conditions. In addition, inflammatory mediators released from activated glial cells induce neurodegeneration in the brain. Systemic inflammation-derived proinflammatory cytokines/chemokines and other factors cause a breach in the blood brain-barrier (BBB) thereby allowing for the entry of immune/inflammatory cells including mast cell progenitors, mast cells and proinflammatory cytokines and chemokines into the brain. These peripheral-derived factors and intrinsically generated cytokines/chemokines, α-synuclein, corticotropin-releasing hormone (CRH), substance P (SP), beta amyloid 1-42 (Aß1-42) peptide and amyloid precursor proteins can activate glial cells, T-cells and mast cells in the brain can induce additional release of inflammatory and neurotoxic molecules contributing to chronic neuroinflammation and neuronal death. The glia maturation factor (GMF), a proinflammatory protein discovered in our laboratory released from glia, activates mast cells to release inflammatory cytokines and chemokines. Chronic increase in the proinflammatory mediators induces neurotoxic Aß and plaque formation in AD brains and neurodegeneration in PD brains. Glial cells, mast cells and T-cells can reactivate each other in neuroinflammatory conditions in the brain and augment neuroinflammation. Further, inflammatory mediators from the brain can also enter into the peripheral system through defective BBB, recruit immune cells into the brain, and exacerbate neuroinflammation. We suggest that mast cell-associated inflammatory mediators from systemic inflammation and brain could augment neuroinflammation and neurodegeneration in the brain. This review article addresses the role of some atypical inflammatory mediators that are associated with mast cell inflammation and their activation of glial cells to induce neurodegeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...